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IWrIoRALADvISORYcobBnTTER FORAERONAUrICS 

EIE?ECTS OF LE%DlZP&ZxE RADIUSAEDMAXIMUMTHICJDJESS-CECRDRATIO OTPTHE 

VKRIATION~MACH NWBER OF TEE AERODYNAMIC CHARACTERISIXCS 

OF SEVERAL THIN NACA AIR3OIL SECTIONS ' 

By Robert E. Berggren and Donald 3. Graham 

SUMMARY 

A wind-tunnel investigation has been Illade to determine the effects 
of leading-edge radius and maximum thickness-chord ratio on the variatioti 
with &ch number of the aerodynanic characterietics of several thin 
symraetrical TX&CA Ldigit-series airfoil sections. The Hach number range 
of the investigation was from 0.3 to approximately 0.9 and the corre- 
sponding Reynolds number range from approximately 1 X 10s to 2 X 106. 

The variations with Mach number of the lift, drag, and pitching 
moment for a 4-prcent-chord-thick airfoil section are not significantly 
affected by a change of leading-edge radius from 0.18 to 0.53 percent of 
the chord. A similar conclusion can be drawn for a leading-edge-radius 
variation from 0.1% to 0.4%percent chord on a 6-percent-chord-thick 
section. 

Progreesive improvement of the variation of lift-curve slope with 
Mach number, the lift and dratiivergence characteristics, and the max- 
imum section lift characteristics at Mach n&ere above 0.6 results from 
reduction of the maximum thicknestEchord ratio from 10 to 4 percent. 
Section pitching+uoment characteristics are not greatly affected by vari- 
ation of the maximumthiclsnesa--chord ratio. 

IXPRODK!TION 

. 
To investigate the influence of airfoil leadiwdge radius on the 

variation with Mach nmber of the aerodynamic characteristics of thin 
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airfoil 8ection8, a seriee of airfoil tests was conducted in the Anus l- 
by +1/29oot hi-peed wind tunnel. The results of the inveetigation 
for a thiclmess-chord ratio of 10 percent have been reported in refer- 
ence 1. The results for thiclmess-chord ratios of 6 and 4 percent axe. 
reported in the present paper. The basic thichess form of the airfoils 
investigated W&B the FiXCA k-digit series (see reference 2) with maximum 
thickness at 40 percent of the airfoil chord. 

L 

In addition to the leading-edge-radius study, the investigation per- 
mitted further analysis of the effects of thicknees-choti-ratio variation 
on the characteristics of airfoil sections gt high subsonic mch numbers. 
This analysis is also contained in the preeent report. 

NOTATION . 

aO 
section lift-curve slope, per degree 

C airfoil chord, feet 

%I section drag coefficient 

c2 section lift coefficient 

l 

a 

“2EEtX maximum section lift coafficient 

section pitohing-molresnt coefficient about the quarter-chord point L _ 

M free-stream Mach nLuriber 
: 

M d Mach number for drag divergence, defined as the Msch number at 

= 0.1 - 

M2 mch number for-li?'t divergence, defined as the Mach number at 
w 

=O 
o = constant 

a== 

V frge-stream velocity, feet per second 
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V local velocity, feet per second 

Ava increment in local velocity correeponding to additional type of 
load distribution, feet per second. 

X distance along chord from leading edge, fraction of chord 

Y distance perpendicular to chord, fraction of chord 

uO section angle of attack, degrees 

DFXCRIFTION OF AIRFOILS 

The airfoil sections of the present study are: . 
Leading-edge radius 

NACA airfoil designation (percent chord) 

0004 - 1.10 40/l. 575 0.18 
0004 - 3=30 W1.575 l 53 
0006 - 1.10 40/l. 575 -4.0 
0006 - -70 40/l. 575 -25 
0006 - -27 4w.575 .lO 
0008 - 1.10 40/l l 575 l 70 
0010 - 1.10 4a.575 1.10 

The first digit of the airfoil designation indicates the car&er. in per- 
cent of the chord; the second, the position of the camber in tenths of 
the chord from the leading edge; and the third and fourth, the maximum 
thicknsse in percent of the chord. The decimal number following the dash 
is the leading-edge-radius index; the leading-edge radius as a fraction 
of the airfoil chord is given by the product of the radius index and the 
squsre of the thichse-chord ratio. A radius index of 1.10 is standard 
for the NACA 4-digiLseries airfoil sections. The two digits immediately 
preceding the slant represent the position of maximum thickness in per- 
cent of the chord from the leading edge. The last decimal number is the 
trailing-edge-angle index, the angle being twice the arc tangent of the 
product of the angle index and the thicla?ees--chord ratio. 

The coordinates of the airfoils investigated are given in tables I 
to VII. The profiles are illustrated in figure 1 and the theoretical 
lw-speed pressure distributions, 
in figure 2. 

determined by the method of reference 3, 
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APPARATUS AND TEms 

The tests were made in the Ames I- by 3-l/2-foot high-speed wind 
tunnel, a lw-tybulence tw&dimnsional-flw wind tunnel. 

The airfoil models, constructed of aluminum alloy, were of &inch 
chord Eind completely spanned the l-foot diakension of the wind-tunnel test 
section. End leabge was prevented by means of contoured sponge-rubber 
gasket6 compressed between the model ends and the tunnel walls. 

Measurements of lift, drag, and pitching nnt were mde at Mach 
numbers from 0.3 to as high as 0.9 for each of the airfoils at angles of 
attack increasing by lo or 2O iracrements from -2O to- a maximum of 12'. 
This range of angles of attack was sufficient to encompass the lift stall 
up to Mach n-era of the order of 0.8. The Reynolds number of the tests 
ranged from approximately 1 X lo6 at the minimum M%h number to approx- 
imately 2 x 10" at the highest %ch numbers. 

Lift and pitching mounts were evaluated by a method similar to that 
described in reference '4 from integrations of the pressure reactions on 
the tunnel walls produced by the airfoil models. Drag measurements were 
made by means ofwake surveys using a rake of total--head tubes. 

REsuI;TS AF?D DISC3JSSION 

Section lift, drag, and quartemhord pitching-moment coefficients 
for the airfoil sectTons investigated are presented as functions of Mach 
number at constant angles of attack in figures 3, 4, and 5, respectively. 
The characteristics for the 1CLpercenLthiclmesshord ratio are taken 
from reference 2. The &&es of attack indicated in the figures repre- 
sent but nominal v&lues, being 6ubJeot to a maximum experimental error 
in setting of 0.15O. The characteristics have b88n corrected for tunnel- 
wall interference by the methods of referenze 5. Dashed lines have been 
used in the figures to indicate the region of possible influence of wind- 
tunnel choking effects on the results. 

- 

Leading-Edge Radius 

Within the limits of the present investigation, the leading-edge a 
radius does not significantly influence the variation with M%zh number 
of the aerodynamic characteristics of &and 6-percent-chord-thick air- - 
foil sections. A small superiorityin the maximum section lift coeffi- 1 
cient at &ch numbere from 0.4 to 0.75 is indicated in figures 6 and 7 
for the hrcent-thick airfoil with the very large no86 radlua. For the 
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&percent&hick sections no important differences exist. No Important 
effect of nose radius change on the lifLcurve-slope variation with Mach 
number is indicated in figure 8 for either thicknes&hord ratio. The 
minimum drag coefficient is noted from a study of figure $3 (illustrating . 
the variation of section drag coefficient with section lift coefficient 
at constant Mach number) to be lower at all Mach numbers for the l!-percent- . - 
thick section with the standard leading-edge radius; but, at moderate to 
large lift coefficients for I&ch numbers up to 0.7, the drag coefficients 
are lwer for the profile with the larger nose radius. The latter trend ' 
can also be noted from this figure for the &percentcthickness+hord ratio. 
No real differences are observed in the variations of section pitching- 
moment coefficient with section lift coefficient at constant Mach number 
(fig.. 10) for the sections with the various leading-edge radii. 

I&ximum Thickness4hord Ratio 

A progressive Improvement in airfoil-section lift characteristics 
results from reduction of the airfoil max3mum thickness-chord ratio from 
10 to 4 percent. From figure Ill, the lift-divergence Mach number is 
observed to increase nearly linearly with thickness reduction. Figure 
32 illustrates the gain in rz~imum sectionlift coefficient with decrease 
in maximumthictise at Mach numbers above 0.6. The values at Mach num- 
bers belw about 0.6 are SUbJ8Ct to question because of the lw scale. 
Hwever, the results of the investigation of reference 6 indicate that at 
the higher Mach nuaibers the values are not much influenced by the rela- 
tively lw test Reynolds numbers (approximately 2 X 106). The effects of 
maximum thickness-chord-ratio variation on the section lift-curve slope, 
illustrated in figure 13, are what should be expected in that each succes- 
sive reduction of thickness increases the B&h nuaiber at which the lift- 
curve slope breaks. 

The effect of reduction of thicknsss-chord ratio on the Mach number 
for drag divergence (fig. 14) is to increase markedly the value of this 
parasleter,at zero lift. With increasing lift coefficient this favorable 
effect diminishes, becoming very small at a lift coefficient of 0.5. 

.At M%h nznribers below 0.7, the variation of section drag coefficient 
with section lift coefficient (fig. 9) is adversely affected by reduction 
of the maximum thicheee; for Mach numbers greater than 0.75, the COD- 
verse is true. The minImum drag coefficient is progressively decreased 
with maximumthic~ss reduction at all Mach numbers. 

I&ximumthickness-chord ratio, within the limits of the present 
investi~tion, has no important influence on airfoil-section pitohing- 
moment characteristics. 
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coNcLusIoNs 

RICA RM A5ODO4 

From the results of a high--speed wind-tunnel investigatio~f the 
effects of leading-edge radius and maxImum thickness-chord ratio on the 
variation with Mach nzmiber of the aerodynamic characteristics of several 
thin symmetrical RACA Icdigit-seri8s airfoil sections, it is concluded: 

1. The variations with Mach number of the lift, drag, and pitching 
moment for a 4-percent-chord-thick airfoil section are not significantly 
affected by a change of the leadiwdge radius from 0.18 to 0.53 percent 
of the chord. The S~IB is true for a leading-edge-radius variation from 
O.lO- to O.&O-percent chord on a 6-perc8nt-chord-thick section. 

2. Reduction of the l~plximum thickness-chord ratio from 10 to 4 
percent progressiv8~ .imprOPeS the variation of lift-curv8 elope with 
Mzch number, the lift and drag4ivergence characteristics, and the m%x- 
imum section lift characteristics at Mach numbers above 0.6. 

3. Section pitching-mo~nt characteristics are not greatly affected 
by variation of the mEtximum thickness-chord ratio. 

Ames Aeronautical Laboratory, 
National Advfsory Conrmittee for Aeronautics, 

Moffett FFeld, Calif. 
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x 
(percent c 

0 
1.25 

::2 
7.5 

10 
15 

z 

50 
60 

2 

z 
LOO 

THE RACA 000~1.10 40/1.575 AIRFOIL 

Y 
(percent 0) 

0 
0605 
.818 

1.090 
1.270 
1.413 
1.620 
1.765 
1.940 
2.000 
1.940 
1.773 
1.493 
1.106 

.622 

.342 

.040 

wN2 

0 
1.125 
1.130 
l.l.23 
1.115 
1.108 
l.Ogg 
1.097 
l-093 
1.088 
1.o85 
1.082 
1.061 
1.032 

:;:i 
0 

I;, E. radius: 0.18 percsnt c. 

0 
1.061 
1.063 
1.060 
1.056 
1.053 
1.048 
1.048 
1.046 
1.043 
1.042 
1.040 
1.030 
1.016 

-997 
-970 

0 

5.565 
1.427 
1.010 

- 705 

:g 
.382 
.320 
.243 
,195 
-156 
9125 
. og6 
. o6g 
.037 
,013 

0 



RAC!A RM A5ODO4 9 

TABLE II. -COORD~~S~THE~TICALPRESSTlREDI~IBrmIONSFOR 
THE IXACA 0004-3.30 40/l. 575 AIXFOIL 

X Y 
(percent c) (percent c> Tm2 4.v Apa/V 

0 0 0 0 3.515 
1.25 -931 1.328 1.153 l-199 

2.5 5.0 ;-J-9& 1.317 1.148 1.214 1.102 :%.4 
7-5 1:611 1.182 1.087 -549 

10 1.717 1.153 1.074 ,466 
15 

:-z2 
1.112 1.054 -366 

20 
lb55 

1.091 1.045 ,306 
30 
40 

1.038 ,234 
2.000~ 

y70.7 

50 1.940 1:083 
1.040 ,189 
1.041 ,154 

60 l-773 1.079 / 1.039 ,126. 
87: 1.493 1.106 1.059 1.029 1.016 l 099 

l-033 -075 
90 ,622 - 994 l 997 = ,049 
95 ,342 -935 -967 -033 

100 ,040 0 0 0 

L. E. radius: 0.53 percent c. 

. 

- 
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THE NACA 0006-1.10 40/l-575 AIRJZOIL 

X Y 
(percent c) (percent c > <v/w2 V/V ApaP 

0 0 0 0 3.781 
1.25 -907 1.149 1.072 1.361 
;:2 1.633 1.228 1.174. 1.174 1.084 l.o84 .684 - 974 

7.5 1.908 1.164 1.080 -551 
10 2.330 1.158 1.076 ,470 
15 2.433 1.145 1.070 -372 
20 2.645 1.141 1.068 ,312 

2: 2.=5 3.000 l-14-3 1.141 1.068 1.069 -239 .18g 
50 2.915 1.128 1.062 ,154 
60 2.660 l.llT- 1.056 -125 
87: - 2.240 1.660 1.088 l-053 1.043 1.026 -098 

,072 
90 :g:: 1.002 1.001 ,045 
95 l 915 -957 l o27 

100 .060 0 0 0 

L. E. radiue: 0.40 percent c. 

- 

. 
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TABLE IV. -COORDINATES QID THFBEETICAL PRESSUREi DISTRIBUTIONS FOR 
TFIE TtACA 00060.70 40/1.575 AIRFOIL 

X Y 
(percent c) (percent c> I 

(v/e2 

0 
1.25 
2.5 

0 0 
.766 1.083 

1.067 1.123 
1.473 1.138 
1.767 1.142 
1;989 1.144 
2.354 1.14-8 
2.607 1.152 
2.908 1.148 
3.000 1.145 
2.915 1.136 
2.660 l.ll7 
2.240 1.095 
1.660 1.056 

,934 -997 
-514 0924 
-060 0 

L. E. radius: 0.25 percent C. 

0 
1.041 
1.060 
1.067 
1.069 
1.069 
1.072 
1.073 
1.072 
1.070 
1.066 
l-057 
1.046 
1.028 

-999 
.g6l 

0 

- 193 
-156 
.1.26 
l 099 

.074 

.047 

.030 
0 

. 

. 
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0 0 0 0 6.893 
1.25 

:FE 
-962 .*1 1.349 

2.5 1.029 1.015 l 974 

5-o 1.247 1.on 1.038 7.5 l.Ogy 1.047 :E!Z 
10 za 1.119 1,058 -480 
15 2:246 l.lAO 1.068 -383 
20 2.546 1.154 1.074 -322 
2-t 2.900 3.000 1.160 1.148 1.077 

1.0-p 
ml94 -245 

z 2.660 2.914 1.120 1.134 l-058 1.065 -157 
-127 

z 2.240 1.660 l-097 1.058 1.047 1.029 -099 
-073 

E -514 -934 -999 -920 -959 -999 -028 ,046 

100 -060 0 0 I 0 

L. E. radius: 0.10 percent c. 



NACA RM A5ODOk 13 

TABLE VI. -CCOORD~SAM)THE~ICAL~SSUREDISTRIB~IOmSF~ 
THE RACA 0008-1.10 40/l-575 AIRFOIL 

x Y 
(percent cl (percent c) (v/-e2 v/v AvJV 

0 0 0 0 2.g23 
1.25 1.210 1.138 1.067 1.329 
::2 2.179 1.636 1.228 1.236 1.112 1.108 ,686 -974 

7-5 2.540 1.223 1.106 - 552 
10 2.825 1.217 1.103 -471 
15 3.240 1.206 l.Og8 -374 
20 3.530 1.199 l-o95 -31.4 
zi 4.000 3 -889 1.194 l-093 -239 

1.191 1.092 ml91 
2: 3.545 3.889 l.l& 1.160 1.087 0155 

1.on ,125 
2 2.985 2.212 1.123 1.060 -098 

1.075 l-037 -072 
z 1.243 ,684 -994 -919 ,958 -997 ,029 -045 

loo ,080 0 0 0 

L. E. radius: 0.70 percent c. 

I- 

. 
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TABLEVII. -COORDINATESAMDTHEO~IC~~SSUREDISTRIBUTIONSFCER 
THE NACA 0010-1.10 40/l-575 AIRFOIL 

X Y 
(percent 0) (percent c > b/w2 v/V Ava iv 

0 Y-511 0 0 2.324 
1.25 1.108 1.053 1.286 

2.5 2.044 1.245 1.116 5.0 2.722 1.286 1.134 :69$ 
7.5 3.178 l-277 1.130 

lo 3.533 1.269 1.127 2;; 
15 4.056 1.261 1.123 
20 4.411 1.248 l.ll7 :::a 

2: 5.000 4.856 1.242 1.244 1.115 1.116 - -241 193 
50 4.856 1.231 1.110 -155 
60 4.433 1.2ll 1.101 -126 

87: 2.767 3.733 1.155 1.089 1.074 1.043 -0% -072 
90 1.556 -980 - 990 -045 

1::. .856 ml00 

I 

0 .glE 

I 

0 - 955 

I 

0 ,030 

L. E. radius: 1.10 percent c. 

. 
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c 

NACA 0004-/./O 401/.575 

< 

NACA 0004-3.30 40//.575 

NAGA 0006 ---/.I0 40//.575 

c 

A’ACA 0006- 0.70 40/I/.575 

NACA 0006-0.27 40//.575 

NACA 0008 --L/O 40//.575 

- 

NACA 00/O- L/O 40//575 

Figure i.- NACA o/rfoi/ pro files invesfiguted. 
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.5 . .6 .7 
Mach number, M 

.8 .9 

v 

(a) NACA 0004 -I./O 4Od.575 Airfoil. 

Fipt8 3.- Vuriution of section /iff coefficienf with Much number 
of constant ung/es of attack. 
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Mach number, M 

tbl NACA 0004 -330 40/X575 A/rfoi/, 

Figure 3- Contnued. 
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I I I. I I I 

.3 .4 .5 .6 .7 
Mach number, M 
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(cl NACA 0006-/./O 40/X575 Airfo//. 

Figure 3.- Confi’nued. 
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.8 

1 I A+’ . . w ! 
“I o,-2, I I I I I I INI I I 

Mach number, M 

(el NACA 0006 -0.27 40/L 5 75 AirfoiL 

figure 3.- Continued. 
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.3 .4 .5 .6 .7 
m Mach number, M 

.8 

(f.) NACA ooo8-I./O 40//.575 Airfoil. 

Figum 3.- Canfinued. 
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.4; 5 

n 4O 
V 6O 
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(g) NACA 00/O-/./O 40/1575 Awfoi.. 

figure 3.- &zhded. 
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.3 .4 .5 .6 .7 .8 .Q 
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(d NACA 0004 -/. /O 40/i. 575 Akfod 
Figure 4.- Vuriution of secfibn drag coeffidiwd with Much number af 

coffstunt ung/es of offa&. 
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.20 c7 
I 

Mach numbef, M 
Lb) NACA 0004-3..30 40/.575 AiffoiX 

figufe A- Confnued 
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IA I I I I I I I I/ I I 
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(cl NACA 0006 -/JO 40/I/. 575 Airfoil’, 
Figure 4.- Contilued. 
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./6 

Much mmber, h4 
(d,’ NACA 0006 - 0.70 40//.575 Airfoi/. 

Figure 4. - Contimed. 
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./8 

(e) NACA 0006 -0.2’ 

. 

Figure 4. - Continued. 
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Much number, A.4 

(01 NACA 0004 -I./O 4Od.575 A/rfoi/. 
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